当前位置:论文网 > 论文宝库 > 工程技术类 > 机械论文 > 正文

热电阻温度传感器

来源:UC论文网2019-04-08 09:25

摘要:

  【摘要】本设计是基于ATmega16(L)AVR单片机的热电阻温度传感器。文章介绍了传感器的基本功能及组成情况,传感器主要由四部分组成:电桥、放大电路、A/D转换及LCD1602液晶显示。  【关键词】热电阻,温度传感器,放大器,AVR单片机  作者:梁玉慧  一、引言  随着社会的进步和工业技术的发展,许多产品对温度因素要求越来越高,温度的高精度测量是工业生产领域一个重要问题。温度传感器是最...

  【摘要】本设计是基于ATmega16(L)AVR单片机的热电阻温度传感器。文章介绍了传感器的基本功能及组成情况,传感器主要由四部分组成:电桥、放大电路、A/D转换及LCD1602液晶显示。


  【关键词】热电阻,温度传感器,放大器,AVR单片机


  作者:梁玉慧


  一、引言


  随着社会的进步和工业技术的发展,许多产品对温度因素要求越来越高,温度的高精度测量是工业生产领域一个重要问题。温度传感器是最早开发、应用最广的一类传感器,例如自动空调系统、家用电器温度控制中,都需要温度传感器来完成,因为温度是需测量和控制的重要参数之一。本设计一个基于AVR单片机的热电阻温度传感器,用于检测液体温度并将结果直观显示。


  二、系统功能分析


  根据系统设计要求,可把电路分为模拟部分和数字部分,采用ATmega16(L)AVR单片机作为系统控制核心,主要实现两个功能,一是将待测温度转换为电压并放大,由模拟部分即电桥电路和电压放大电路实现。二是将电压转换为温度并显示,由数字部分完成,即ATmega16(L)AVR单片机和LCD1602液晶显示,单片机将电压进行A/D转换,然后转换为相应的温度,送到LCD显示。


  三、系统硬件电路设计


  系统控制电路由电桥电路、放大电路、A/D转换电路及LCD显示电路组成。综合考虑设计要求及系统各项功能实现情况后选择以下方案以实现设计的合理化、实用化及最小成本化。


  (一)电桥电路。热电阻的敏感元件阻值随温度发生的变化是很微弱的,必须用专门电路测量这种微弱的变化,最常用电路就是电桥电路。电桥的作用:把电阻片的电阻变化率ΔR/R转换成电压输出,然后提供给放大电路放大后进行测量。为了将约2mV~9mV微弱的电压信号能够较稳定的输出,尽量减少各种干扰,该设计是采用不平衡电桥的±5V恒压源供电法。电桥四臂中只有一臂接入电阻传感器,其余三臂均为固定电阻,则输出电压U0为[1]:


  (3.1)


  (二)探测器测温方法


  电阻温度探测器(RTD)是一根阻值随温度变化而变化的特殊导线。目前铜和铂两种探测器应用较广泛,铂电阻温度传感器有PT100,其电阻温度系数为3.9×10-3/℃,电阻变化率为0.3851Ω/℃,具有测量范围宽、精度高、稳定性好等优点,电阻与温度之间关系接近于线性。为了提高测量精确度,使用铂热电阻Pt100为探测器。为了消除导线电阻受被测温度环境的影响,引线采用三线制测量法。当电桥达到平衡时,有(3.2)


  则


  因取,则有(3.3)


  若使,则有


  由上可知,调节使电桥平衡,可消除环境影响。当Pt100所测温度发生变化时,其电阻相应发生变化,导致输出电压发生变化,输出端产生毫伏级电压,输出电压与温度呈线性关系变化[2]。


  (三)放大电路。经分析可知,传感器输出信号是十分微弱的微伏级电压,且易受噪声干扰。因此要有效提取该信号,关键是在放大有用信号时把干扰信号有效地抑制掉,设计还需考虑放大器精度及稳定性。


  1.前置放大电路。整个电路的失调电压及漂移与第一级密切相关,因此第一级选用具有超低失调电压和超低漂移的集成运放ICL7650,且第一级承担仪用放大器主要放大作用,则取R2=100K,R1=2K,R3/R4=1。第二级的漂移和失调电压对整个电路的作用大大降低,但其共模抑制比CMRR对整个电路的CMRR影响很大,因此第二级选用价格低且性能优越的低漂移集成运放OP07,其失调电压为45V,温漂为0.3V/℃,增益为450V/mV,共模抑制比为123dB。因第一级增益较大,易引起自激振荡,因此在两个100K电阻两端加上150P的电容。ICL7650是一种斩波稳零运放,斩波频率低(200HZ),其输出信号中含有斩波尖峰噪声,因此第二级差分运放电路又做低通滤波器,对斩波噪声及其它干扰信号抑制效果较好[3]。


  2.后级放大电路。后级放大电路完成信号二次放大和低通滤波作用,可根据需要调节放大倍数。应用OP07构成反相放大电路,Vin是经前置放大电路放大后的电压,理论上此放大电路放大倍数为b=100倍。C9、R7构成RC低通滤波网络,其电路截止频率为,f=1/2Л×R×C-1/2兀×30K×0.01u-530Hz,符合设计要求(有用信号频率范围主要集中在0到500Hz);管脚7和4分别接一个0.1pF瓷片电容,用于滤除高频成分;为了减少失调电流,管脚3接R6;OUT端信号进行A/D转换后送至CPU处理。


  (四)数据采集及处理。单片机控制和测量中涉及物理量均为模拟量,模拟量要输入单片机须经过A/D转换为数字量,单片机才能进行运算、加工和处理。在本设计中,直接应用ATmega16(L)AVR单片机与软件结合,实现数据采集、A/D转换及通信功能,电路简单又能满足设计需要。


  A/D转换基本原理是:将参考电平按最大的转换值量化,再利用输入模拟电平与参考电平比值求得输入电平的测量值(V测=V参*(AD量化值/AD转换的最大值))。有些MCUA/D转换的参考电平可选择由一个外部引脚输入,使得用户可以对A/D转换进行更好控制。值得注意的是A/D转换输入电平须比参考电平低或相等,否则测试的结果会偏差很大。


  (五)显示电路。液晶显示器(LCD)具有功耗低、体积小、重量轻、超薄等优点,近几年被广泛用于单片机控制的智能仪器低功耗电子系统中。本设计用常见的1602字符型LCD模块作为显示器。1602B可以显示2行16个字符,有8位数据总线D0-D7,和RS、R/W、EN三个控制端口,工作电压为5V,并且带有字符对比度调节和背光。


  四、系统调试


  启动系统,将程序烧写入控制芯片ATmega16。下载结束后将探测器放入热水中,用万用表测量模拟部分信号输出端电压值U0,与LCD显示电压U1比较。当电压达到稳定后,将探测器放入冷水中,再次比较显示结果,同时记录LCD上显示的温度T1,如表4-1所示。


  表4-1电压及温度测量结果(表4-1)


  五、结论


  本设计实现以下功能:


  根据铂电阻温度探测器的电阻随温度变化而变化原理,将温度变化转化为电阻的变化,再运用不平衡电桥原理将变化的电阻转化为电压。


  用ICL7650制作差动放大电路,将电桥产生的毫伏级电压进行差动放大100倍,用OP07的典型运放电路作为后级放大,通过联级方式对小信号放大滤波[5]。


  用BASCOM语言编程控制AVR单片机实现将模拟信号进行A/D转换及通信,并在LCD上显示电压及相应温度。

核心期刊推荐