当前位置:论文网 > 论文宝库 > 信息科技类 > 应用电子技术论文 > 正文

PLC在轨道交通直流牵引监控系统中的应用探析

来源:UC论文网2015-12-01 18:08

摘要:

1引言 近年来随着城市轨道交通自动化系统的快速发展,很多大型设备的监视和控制都选用微型plc进行改造。对某些控制点少而控制逻辑又较复杂的小型设备来说,微型可编过程控制器

  1引言
  近年来随着城市轨道交通自动化系统的快速发展,很多大型设备的监视和控制都选用微型plc进行改造。对某些控制点少而控制逻辑又较复杂的小型设备来说,微型可编过程控制器紧凑的设计、良好的扩展性、低廉的价格、强大的指令以及较高的可靠性和简便的维护近乎完美的满足了小规模的控制要求。如1500v直流开关柜的测控单元开关整流器的监视单元和400v开关柜的测控单元等均采用了plc可编程程控制器,给安装、运行、维护带来诸多的便利。以下给出的就是sepcos-NGplc在苏州轨道交通一号线直流牵引监控系统中的一个典型应用实例。
  
  2需求分析
  2.1控制网络
  城市轨道交通供电系统是自成体系的配电系统,包含有传统的交流供电系统和直流牵引供电系统两部分。为了实现整体系统的安全可靠运行,必须实现电力系统的调度、运营和管理的自动化。变电站综合自动化系统是轨道交通供电自动化的基本组成,是实现电力监控系统功能的基本单元。轨道交通变电站内各层之间的信息可充分共享,并通过通信接口与外系统交换信息。设计一个快速、稳定、可靠的控制网络是轨道交通变电站自动化系统的基本要求之一,是实现轨道交通供电系统运行管理功能的前提。
  2.2网络结构
  整个上来讲,轨道交通变电站综合自动化系统划分为站级管理层,网络通信层,间隔层:
  (1)站级管理层为设置在控制信号盘内的冗余热备的通信控制器、通用测控装置和一体化监视计算机。
  (2)间隔层包括分散安装于供电一次设备中的各种微机保护测控单元、信息采集设备、智能测控单元以及采用硬接点接入的现场设备。设备包括400v及35kv交流保护测控单元、1500v直流保护测控单元、变压器温控器、轨电位限制装置、制动能量吸收装置、杂散电流监控单元、ups直流屏、电度表、上网隔离开关、跟随所负荷开关等.
  (3)网络通信层即为所内通信网络和接口设备,间隔单元通过所内通信网络层与站级管理层进行数据交换。
  整个系统面向变电所通盘考虑,通过间隔单元与一次开关设备、ct/pt等设备接口,实现对变电所设备的控制、监视、测量、继电保护及数据管理、远程通信等综合自动化管理,以保证供电系统的安全可靠运行。
  一般来讲,轨道交通供电系统分为高压电源系统,直流牵引供电系统,动力、照明、信号电源三个系统。在轨道交通一号线供电系统中,作为轨道交通变电所自动化系统间隔层非常重要的组成部分,直流牵引供电系统直接给列车提供动力,其好坏直接影响整个地铁供电系统质量的高低。如果牵引供电系统出现问题,小则影响某个变电站、几个供电区间的输送电,大则引起整个牵引供电系统崩溃,给地铁列车的安全、运营造成影响。
  轨道交通牵引供电系统是直接为地铁列车提供动力的系统,可以保证地铁列车高速、安全、可靠、经济节电地运行。目前苏州轨道交通一号线牵引供电的运行采用双机组双边供电方式,即每个牵引变电站2台牵引机组带2台总闸,并列向直流母线供电运行,直流母线下设4台分闸,即馈线开关(加上备用共5台),分别向上行、下行车辆进行主备供电,两个相邻的牵引变电站同时向站内同一馈电区间供电,如图1所示。
  
  图1轨道交通变电站直流牵引供电系统典型主接线图
  
  3sepcos-NGplc具体实现功能
  图1中,r1、r2为整流器装置,60、70为直流进线隔离开关,10、20、30、40和90为馈线断路器,61和71为进线断路器,65和75为负极断路器,14、24、34和44为旁路隔离开关,而16、26、36和46为上网隔离开关,813和824为越区隔离开关,除了旁路隔离开关和上网隔离开关之外,所有的保护和测控工作一般均由直流保护装置(如dpu96)进行监视和控制,而对于旁路隔离开关和上网隔离开关的监视和控制工作将是由sepcos-NGplc来完成,对于每一个馈线开关来讲,均配置一个sepcos-NGplc,该plc主要有8个字节的输出和8个字节的输入,其完成的监控功能如表1所示。
  
  
  
  4sepcos-NGplc与上位机通信过程
  以苏州轨道交通一号线为例,变电所自动化系统采用的是南瑞的rt21-sas系统,而1500v直流开关柜测控单元sepcos-NGplc与上位机rt21-sas系统的通信接口采用就是profibus-dp规约与南瑞的c101通信控制器profibus主站进行连接,c101通信控制器除了sepcos-NGplc进行主从连接外,还提供另一路profibus-dp接口与1500v直流开关柜直流保护测控单元dpu96,每个站设置2套协议及光电转换模块,实现profibus-dp信息的接入。此外,35kv的整流器监控单元与rt21-sas系统的通信接口方案也是经过profibus-dp规约与c101通信控制器实现互联。具体连接方案如图2所示。
  
  图2sepcos-NGplc与轨道交通变电所自动化系统上位机连接图
  sepcos-NGplc作为dp从站,与c101通信控制器实现互联通信。c101通信控制器为南瑞自主研发的遵循en50170标准的profibus-dp主站,它主要完成profibus协议转换成与总控通信的can2.0b协议。sepcos-NGplc作为c101的从站,主要用于1500v直流馈线柜的旁路隔离开关和上网隔离开关的监控、数据采集等功能。
  从通信流程上来讲,sepcos-NGplc主要是通过em277将sepcos-NGplccpu作为dp从站连接到profibus-dp现场总线网络中,此外,sepcos-NGplc的em277还用来作为西门子step7v5.3对sepcos-NGplc进行组态,主要是通过sepcos-NGplc的mpi通讯口与装有西门子step7v5.3的计算机来对steps7软件进行组态。为了使sepcos-NGplc的em277profibus-dp模块可以与主站通讯,sepcos-NGplc与主站必须工作在相同的波特率下。当em277profibus-dp模块用作mpi通讯时,其mpi主站必须使用dp模块的站址向sepcos-NG发送组态信息,发送到em277dp模块的mpi组态信息,将会被传送到sepcos-NGplc上,从而达到对sepcos-NGplc组态的目标。以下为sepcos-NGplc作为dp从站与c101主站的组态参数配置如表2所示。
  
  
  整体上,所有的现场profibus-dp通信设备均使用profibus-dp规约接入南瑞自主研发的c101通信控制器,c101通信控制器主要目的就是利用profibus-dp通信规约采集底层现场设备的数据,并通过双can现场总线规约送往南瑞的pscada总控系统c302,另外,c101还将接受c302的各种控制、查询命令,对底层profibus-dp现场设备进行实时监控,从而满足了苏州轨道交通一号线的1500v直流测控的实时数据采集、监控、继电保护等各种功能。
  实现上,c101通信控制器与底层设备的数据传输速率为187.5k,c101做dp的通信主站,周期性的扫描底层设备,根据苏州轨道交通公司的要求,c101通信控制器提供两组profibus通信接口。其中一组光纤接口连接西门子的直流测控保护装置dpu96,另一组光纤接口连接sepcos-NG完成对1500v直流进线柜、负极柜、馈线柜一次设备的实时监控功能。之所以采用两组光纤接口是由于1500v直流开关室与变电所监控中心的距离比较远(一般500~1km),使用电接口将会导致信号衰减以致于误码率将会大大提高。
  profibus的应用,首先必须进行严格的组态,使主站与从站的数据严格一致,考虑到使用者大多熟悉siemens公司提供的通用组态软件comprofibus,应用软件使用的数据文件格式和用comprofibus生成的数据文件格式完全相同,并且支持到最新的5.0版本。通过“超级终端”,还可以随时观察组态数据文件的参数内容,以确认组态的正确性。
  
  5结束语
  使用sepcos-NG可编程控制器替代继电控制,不但省略了许多繁琐的中间控制环节,还大大提高了可靠性和精确性,达到了理想的效果。sepcos-NGplc应用于轨道交通直流牵引领域,不仅在很大程度上减少了二次接线、设备,减少了变电站运行维护量;取消了轨道交通牵引供电系统保护屏,大大降低了系统的造价;而且提高二次回路的智能控制能力、自动化水平和供电质量,降低故障率,使牵引供电系统能更加可靠地运行。sepcos-NGplc作为profibus-dp从站,用一根双绞线连接主站,若要扩展dp从站,只需将总线延伸,加入其它sepcos-NGplc从站,不再增加布线的工作量和费用,系统扩展非常快捷。目前该应用方案可以在苏州轨道交通一号线直流牵引监控现场稳定运行。由于sepcos-NGplc具有数据传输速度快、系统实现简单、可靠性高等优点,其必将在轨道交通系统中得到广泛的应用。

核心期刊推荐