急求带式输送机传动装置中的二级圆柱齿轮减速器毕业设计

卷卷小白菜 2021-09-19 09:19 427 次浏览 赞 135

最新问答

  • zcp1211小窝

    前 言

      机械设计综合课程设计在机械工程学科中占有重要地位,它是理论应用于实际的重要实践环节。本课程设计培养了我们机械设计中的总体设计能力,将机械设计系列课程设计中所学的有关机构原理方案设计、运动和动力学分析、机械零部件设计理论、方法、结构及工艺设计等内容有机地结合进行综合设计实践训练,使课程设计与机械设计实际的联系更为紧密。此外,它还培养了我们机械系统创新设计的能力,增强了机械构思设计和创新设计。
      本课程设计的设计任务是展开式二级圆柱齿减速器的设计。减速器是一种将由电动机输出的高转速降至要求的转速比较典型的机械装置,可以广泛地应用于矿山、冶金、石油、化工、起重运输、纺织印染、制、造船、机械、环保及食品轻工等领域。
      本次设计综合运用机械设计及其他先修课的知识,进行机械设计训练,使已学知识得以巩固、加深和扩展;学习和掌握通用机械零件、部件、机械传动及一般机械的基本设计方法和步骤,培养工程设计能力和分析问题,解决问题的能力;提高我们在计算、制图、运用设计(手册、 图册)进行经验估算及考虑技术决策等机械设计方面的基本技能,同时给了我们练习电脑绘图的机会。
      最后借此机会,对本次课程设计的各位指导以及参与校对、帮助的同学表示衷心的感谢。
      由于缺乏经验、水平有限,设计中难免有不妥之处,恳请各位及同学提出宝贵意见。

      带式输送机概论

      带式输送机是一种摩擦驱动以连续方式运输的机械。应用它可以将物料在一定的输送线上,从最初的供料点到最终的卸料点间形成一种物料的输送流程。它既可以进行碎散物料的输送,也可以进行成件物品的输送。除进行纯粹的物料输送外,还可以与各企业生产流程中的工艺过程的要求相配合,形成有节奏的流水作业运输线。所以带式输送机广泛应用于现代化的各种企业中。在矿山的井下巷道、矿井地面运输系统、露天采矿场及选矿厂中,广泛应用带式输送机。它用于水平运输或倾斜运输。使用非常方便。
      输送机发展历史
      中国古代的高转筒车和提水的翻车,是现代斗式提升机和刮板输送机的雏形;17世纪中,开始应用架
      空索道输送散状物料;19世纪中叶,各种现代结构的输送机相继出现。
      1868年,在英国出现了带式输送机;1887年,在美国出现了螺旋输送机;1905年,在瑞士出现了钢带式输送机;1906年,在英国和德国出现了惯性输送机。此后,输送机受到机械、电机、化工和冶金技术进步的影响,不断完善,逐步由完成车间内部的输送,发展到完成在企业内部、企业之间甚至城市之间的物料搬运,成为材料搬运系统机械化和自动化不可缺少的组成部分。
      输送机的特点
      带式输送机是煤矿最理想的高效连续运输设备,与其他运输设备(如机车类)相比具有输送距离长、运量大、连续输送等优点,而且运行可靠,易于实现自动化和集中化控制,尤其对高产高效矿井,带式输送机已成为煤炭开采机电一体化技术与装备的关键设备。
      带式输送机主要特点是机身可以很方便的伸缩,设有储带仓,机尾可随采煤工作面的推进伸长或缩短,结构紧凑,可不设基础,直接在巷道底板上铺设,机架轻巧,拆装十分方便。当输送能力和运距较大时,可配中间驱动装置来满足要求。根据输送工艺的要求,可以单机输送,也可多机组水平或倾斜的运输系统来输送物料。
      带式输送机广泛地应用在冶金、煤炭、交通、水电、化工等部门,是因为它具有输送量大、结构简单、维修方便、成本低、通用性强等优点。
      带式输送机还应用于建材、电力、轻工、粮食、港口、船舶等部门。
      一、 设计任务书
      设计一用于带式运输机上同轴式二级圆柱齿减速器
      1. 总体布置简图

      2. 工作情况
      工作平稳、单向运转
      3. 原始
      运输机卷筒扭矩(N•m) 运输带速度(m/s) 卷筒直径(mm) 使用年限(年) 工作制度(班/日)
      350 0.85 380 10 1
      4. 设计内容
      (1) 电动机的选择与参数计算
      (2) 斜齿传动设计计算
      (3) 轴的设计
      (4) 滚动轴承的选择
      (5) 键和联轴器的选择与校核
      (6) 装配图、零件图的绘制
      (7) 设计计算说明书的编写
      5. 设计任务
      (1) 减速器总装配图1张(0号或1号图纸)
      (2) 齿、轴、轴承零件图各1张(2号或3号图纸)
      (3) 设计计算说明书一份
      二、 传动方案的拟定及说明
      为了估计传动装置的总传动比范围,以便选择合适的传动机构和拟定传动:方案,可由已知条件计算其驱动卷筒的转速nw:

      三. 电动机的选择
      1. 电动机类型选:Y行三相异步电动机
      2. 电动机容量
      (1) 卷筒轴的输出功率

      (2) 电动机的输出功率

      传动装置的总效率
      式中, 为从电动机至卷筒轴之间的各传动机构和轴承的效率。由《机械设计课程设计》(以下未作说明皆为此书中查得)表2-4查得:V带传动 ;滚动轴承 ;圆柱齿传动 ;弹性联轴器 ;卷筒轴滑动轴承 ,则

      故
      (3) 电动机额定功率
      由第二十章表20-1选取电动机额定功率
      由表2-1查得V带传动常用传动比范围 ,由表2-2查得两级展开式圆柱齿减速器传动比范围 ,则电动机转速可选范围为

      可选符合这一范围的同步转速的电动3000 。

      根据电动机所需容量和转速,由有关手册查出只有一种使用的电动机型号,此种传动比方案如下表:
      电动机型号 额定功率
      电动机转速
      传动装置传动比
      Y100L-2 3 同步 满载 总传动比 V带 减速器
      3000 2880 62.06 2

      三、 计算传动装置总传动比和分配各级传动比
      1. 传动装置总传动比

      2. 分配各级传动比
      取V带传动的传动比 ,则两级圆柱齿减速器的传动比为

      按展开式布置考虑润滑条件,为使两级大齿直径相近由图12展开式曲线的
      则i
      所得 符合一般圆柱齿传动和两级圆柱齿减速器传动比的常用范围。
      四、计算传动装置的运动和动力参数:

      按电动机轴至工作机运动传递路线推算,得到各轴的运动和动力参数
      1.各轴转速:

      2.各轴输入功率:

      Ⅰ~Ⅲ轴的输出功率分别为输入功率乘轴承效率0.99,卷筒轴输出功率则为输入功率乘卷筒的传动效率0.96,计算结果见下表。

      3. 各轴输入转矩:

      Ⅰ~Ⅲ轴的输出转矩分别为输入转矩乘轴承效率0.99,卷筒轴输出转矩则为输入转矩乘卷筒的传动效率0.96,计算结果见下表。

      综上,传动装置的运动和动力参数计算结果整理于下表:

      轴名 功率
      转矩
      转速

      传动比

      效率

      输入 输出 输入 输出
      电机轴 2.3 7.63 2880 2
      0.96
      I轴 2.21 14.65 1440
      7.13
      0.95
      II轴 2.1 99.29 201. 96
      4.35 0.95
      III轴
      2.0 410.58 46.43
      1.00 0.98
      卷筒轴 1.94 398.34

      第三章 主要零部件的设计计算
      §3.1 展开式二级圆柱齿减速器齿传动设计

      §3.1.1 高速级齿传动设计
      1. 选定齿类型、精度等级、材料及齿数
      1)按以上的传动方案,选用直齿圆柱齿传动。
      2)运输机为一般工作,速度不高,故选用8级精度(GB 10095-88)。
      3) 材料选择。考虑到的方便及小齿容易磨损并兼顾到经济性,两级圆柱齿的大、小齿材料均用45钢,大齿为正火处理,小齿热处理均为调质处理且大、小齿的齿面硬度分别为260HBS,215HBS。
      4)选小齿的齿数 ,大齿的齿数为 。
      2. 按齿面接触强度设计
      由设计公式进行试算,即

      (1) 确定公式内的各计算数值
      1) 试选载荷系数
      2) 由以上计算得小齿的转矩:
      3) 查6-12(机械设计基础)表选取齿宽系数 ,查图6-37(机械设计基础)按齿面硬度的小齿的接触疲劳强度极限 ;大齿的接触疲劳强度极限 。
      计算接触疲劳许用应力,取失效概率为1%,安全系数S=1

      4)计算应力循环次数

      5) 按接触疲劳寿命系数

      (2) 计算:

      1) 带入 中较小的值,求得小齿分度圆直径 的最小值为

      3) 计算齿宽: 取 ,
      4) 计算分度圆直径与模数、中心距:
      模数: 取第一系列标准值m=1.5
      分度圆直径:

      中心距:
      5) 校核弯曲疲劳强度:
      符合齿形因数 由图6-40得 =4.35, =3.98
      弯曲疲劳需用应力:
      1) 查图6-41得弯曲疲劳强度极限 : ;
      2) 查图6-42取弯曲疲劳寿命系数
      3) 计算弯曲疲劳许用应力.
      取弯曲疲劳安全系数S=1,得

      4) 校核计算:
      <
      <
      故弯曲疲劳强度足够
      确定齿传动精度:
      圆周速度:
      对照表6-9(机械设计基础)根据一般通用机械精度等级范围为6~8级可知,齿精度等级应选8级

      §3.1.2 低速级齿传动设计
      1. 选定齿类型、精度等级、材料及齿数
      1)按以上的传动方案,选用直齿圆柱齿传动。
      2)运输机为一般工作,速度不高,故选用8级精度(GB 10095-88)。
      3) 材料选择。考虑到的方便及小齿容易磨损并兼顾到经济性,两级圆柱齿的大、小齿材料均用45钢,热处理均为正火调质处理且大、小齿的齿面硬度分别为200HBS,250HBS,二者材料硬度差为40HBS。
      4)选小齿的齿数 ,大齿的齿数为 ,取 。
      2. 按齿面接触强度设计
      由设计公式进行试算,即

      2) 确定公式内的各计算数值
      1) 试选载荷系数
      2) 由以上计算得小齿的转矩
      3) 查表及其图选取齿宽系数 ,由图6-37按齿面硬度的小齿的接触疲劳强度极限 ;大齿的接触疲劳强度极限 。
      4) 计算接触疲劳许用应力,取失效概率为1%,安全系数S=1

      5) 查图6-42取弯曲疲劳寿命系数

      按接触疲劳寿命系数

      模数: 由表6-2取第一系列标准模数
      分度圆直径:
      中心距:
      齿宽:
      校核弯曲疲劳强度:
      复合齿形因数 由图6-40得
      6)计算接触疲劳许用应力,取失效概率为1%,安全系数S=1
      得
      校核计算: <
      <
      故弯曲疲劳强度足够
      确定齿传动精度:
      圆周速度:
      对照表6-9(机械设计基础)根据一般通用机械精度等级范围为6~8级可知,齿精度等级应选8级
      对各个轴齿相关计算尺寸
      表6-3高速轴齿各个参数计算列表
      名称 代号 计算公式
      齿数 Z

      模数

      压力角

      齿高系数

      顶隙系数

      齿距 P

      齿槽宽 e

      齿厚 s

      齿顶高

      齿根高

      齿高 h

      分度圆直径 d

      基圆直径

      齿顶圆直径

      齿根圆直径

      中心距

      表6-3低速轴齿各个参数计算列表
      名称 代号 计算公式
      齿数 Z

      模数

      压力角

      齿高系数

      顶隙系数

      齿距 P

      齿槽宽 e

      齿厚 s

      齿顶高

      齿根高

      齿高 h

      分度圆直径 d

      基圆直径

      齿顶圆直径

      齿根圆直径

      中心距

      V带的设计
      1)计算功率

      2)选择带型
      据 和 =2880由图10-12<械设计基础>选取z型带
      3)确定带基准直径
      由表10-9确定 <械设计基础>

      1) 验算带速
      因为 故符合要求
      2) 验算带长
      初定中心距

      由表10-6选取相近
      3) 确定中心距

      4) 验算小带包角
      故符合要求
      5) 单根V带传递额定功率
      据 和 查图10-9得
      8) 时单根V带的额定功率增量:据带型及 查表10-2<械设计基础>得
      10)确定带根数
      查表10-3 查表10-4 <械设计基础>

      11) 单根V带的初拉力
      查表10-5

      12)用的轴上的力

      13带的结构和尺寸
      以小带为例确定其结构和尺寸,由图10-11<械设计基础>带宽
      §3.3 轴系结构设计
      §3.3.1 高速轴的轴系结构设计
      一、轴的结构尺寸设计
      根据结构及使用要求,把该轴设计成阶梯轴且为齿轴,共分七段,其中第5段为齿,如图2所示:

      图2
      由于结构及工作需要将该轴定为齿轴,因此其材料须与齿材料相同,均为合金钢,热处理为调制处理, 材料系数C为118。
      所以,有该轴的最小轴径为:
      考虑到该段开键槽的影响,轴径增大6%,于是有:
      标准化取
      其他各段轴径、长度的设计计算依据和过程见下表:
      表6 高速轴结构尺寸设计
      阶梯轴段 设计计算依据和过程 计算结果
      第1段
      (考虑键槽影响)

      13.6

      16

      60
      第2段
      (由唇形密封圈尺寸确定)

      20(18.88)

      50
      第3段 由轴承尺寸确定
      (轴承预选6004 B1=12)

      20

      23
      第4段

      24(23.6)

      145
      第5段 齿顶圆直径
      齿宽
      33

      38
      第6段

      24

      10
      第7段

      20

      23
      二、轴的受力分析及计算
      轴的受力模型简化(见图3)及受力计算
      L1=92.5 L2=192.5 L3=40

      三、轴承的寿命校核
      鉴于调整间隙的方便,轴承均采用正装.预设轴承寿命为3年即12480h.
      校核步骤及计算结果见下表:
      表7 轴承寿命校核步骤及计算结果
      计算步骤及内容 计算结果
      6007轴承

      A端 B端
      由手册查出Cr、C0r及e、Y值 Cr=12.5kN
      C0r=8.60kN
      e=0.68
      计算Fs=eFr(7类)、Fr/2Y(3类) FsA=1809.55 FsB=1584.66
      计算比值Fa/Fr FaA /FrA>e FaB /FrB< e
      确定X、Y值 XA= 1,YA = 0, XB =1 YB=0
      查载荷系数fP 1.2
      计算当量载荷
      P=Fp(XFr+YFa) PA=981.039 PB=981.039
      计算轴承寿命

      9425.45h
      小于
      12480h
      由计算结果可见轴承6007合格.

      表8 中间轴结构尺寸设计
      阶梯轴段 设计计算依据和过程 计算结果
      第1段
      由轴承尺寸确定
      (轴承预选6008 )

      33.6

      40

      25

      第2段
      (考虑键槽影响)

      45(44.68)

      77.5
      第3段

      50

      12.5
      第4段

      99

      109

      第5段

      46

      39
      考虑到低速轴的载荷较大,材料选用45,热处理调质处理,取材料系数
      所以,有该轴的最小轴径为:
      考虑到该段开键槽的影响,轴径增大6%,于是有:
      标准化取
      其他各段轴径、长度的设计计算依据和过程见下表:
      表10 低速轴结构尺寸设计
      阶梯轴段 设计计算依据和过程 计算结果
      第1段
      (考虑键槽影响)
      (由联轴器宽度尺寸确定)

      52.49
      60(55.64)

      142

      第2段
      (由唇形密封圈尺寸确定)

      64(63.84)

      50
      第3段

      66
      16

      第4段 由轴承尺寸确定
      (轴承预选6014C )

      70

      24
      第5段

      78

      75
      第6段
      20

      88

      20
      第7段
      齿宽+10
      80(79.8)

      119
      §3.3.4 各轴键、键槽的选择及其校核
      因减速器中的键联结均为静联结,因此只需进行挤压应力的校核.
      一、 高速级键的选择及校核:
      带处键:按照带处的轴径及轴长选 键B8X7,键长50,GB/T1096
      联结处的材料分别为: 45钢(键) 、40Cr(轴)
      二、中间级键的选择及校核:
      (1) 高速级大齿处键: 按照毂处的轴径及轴长选 键B14X9GB/T1096
      联结处的材料分别为: 20Cr (毂) 、45钢(键) 、20Cr(轴)
      此时, 键联结合格.
      三、低速级级键的选择及校核
      (1)低速级大齿处键: 按照毂处的轴径及轴长选 键B22X14,键长 GB/T1096
      联结处的材料分别为: 20Cr (毂) 、45钢(键) 、45(轴)
      其中键的强度最低,因此按其许用应力进行校核,查手册其

      该键联结合格
      (2)联轴器处键: 按照联轴器处的轴径及轴长选 键16X10,键长100,GB/T1096
      联结处的材料分别为: 45钢 (联轴器) 、45钢(键) 、45(轴)
      其中键的强度最低,因此按其许用应力进行校核,查手册其

      该键联结合格.

      第四章 减速器箱体及其附件的设计
      §4.1箱体结构设计
      根据箱体的支撑强度和铸造、工艺要求及其内部传动零件、外部附件的空间位置确定二级齿减速器箱体的相关尺寸如下:(表中a=322.5)
      表12 箱体结构尺寸
      名称 符号 设计依据 设计结果
      箱座壁厚 δ 0.025a+3=11 11
      考虑铸造工艺,所有壁厚都不应小于8
      箱盖壁厚 δ1 0.02a+3≥8 9.45
      箱座凸缘厚度 b 1.5δ 16.5
      箱盖凸缘厚度 b1 1.5δ1 14.18
      箱座底凸缘厚度 b2 2.5δ 27.5
      地脚螺栓直径 df 0.036a+12 24(23.61)
      地脚螺栓数目 n 时,n=6
      6
      轴承旁联结螺栓直径 d1 0.75df 18
      箱盖与箱座联接螺栓直径 d 2 (0.5~0.6)df 12
      轴承端盖螺钉直径和数目 d3,n (0.4~0.5)df,n 10,6
      窥视孔盖螺钉直径 d4 (0.3~0.4)df 8
      销直径 d (0.7~0.8) d 2 9
      轴承旁凸台半径 R1 c2 16
      凸台高度 h 根据位置及轴承座外径确定,以便于扳手作为准 34
      外箱壁至轴承座端面距离 l1 c1+c2+ (5~10) 42
      大齿顶圆距内壁距离 ∆1 >1.2δ 11
      齿端面与内壁距离 ∆2 >δ 10
      箱盖、箱座肋厚 m1 、 m m1≈0.85δ1 =8.03 m≈0.85δ=9.35 7
      轴承端盖凸缘厚度 t (1~1.2) d3 10
      轴承端盖外径 D2 D+(5~5.5) d3 120
      轴承旁边连接
      螺栓距离

      S
      120
      第五章 运输、安装和使用维护要求
      1、减速器的安装
      (1)减速器输入轴直接与原动机连接时,推荐采用弹性联轴器;减速器输出轴与工作机联接时,推荐采用齿式联轴器或其他非刚性联轴器。联轴器不得用锤击装到轴上。
      (2)减速器应牢固地安装在稳定的水平基础上,排油槽的油应能排除,且冷却空气循环流畅。
      (3)减速器、原动机和工作机之间必须仔细对中,其误差不得大于所用联轴器的许用补偿量。
      (4)减速器安装好后用手转动必须灵活,无卡现象。
      (5)安装好的减速器在正式使用前,应进行空载,部分额定载荷间歇运转1~3h后方可正式运转,运转应平稳、无冲击、无异常振动和噪声及渗漏油等现象,最高油温不得超过100℃;并按标准规定检查齿面接触区位置、面积,如发现故障,应及时排除。
      2、使用维护
      本类型系列减速器结构简单牢固,使用维护方便,承载能力范围大,公称输入功率0.85—6660kw,公称输出转矩100—410000N.m,不怕工况条件恶劣,是适用性很好,应用量大面广的产品。可通用于矿山、冶金、运输、建材、化工、纺织、轻工、能源等行业的机械传动。但有以下条件:
      1.减速器高速轴转速不高于1000r/min;
      2.减速器齿圆周速度不高于20m/s;
      3.减速器工作环境温度为—40~45℃,低于0℃时,启动前润滑油应预热到8℃以上,高于45℃时应采取隔热措施。
      3、减速器润滑油的更换:
      (1)减速器第一次使用时,当运转150~300h后须更换润滑油,在以后的使用中应定期检查油的质量。对于混入杂质或变质的油须及时更换。一般情况下,对于长期工作的减速器,每500~1000h必须换油一次。对于每天工作时间不超过8h的减速器,每1200~3000h换油一次。
      (2)减速器应加入与原来牌号相同的油,不得与不同牌号的油相混用。牌号相同而粘度不同的油允许混合用。
      (3)换油过程中,蜗应使用与运转时相同牌号的油清洗。
      (4)工作中,当发现油温温升超过80℃或油池温度超过100℃及产生不正常的噪声等现象时,应停止使用,检查原因。如因齿面胶合等原因所致,必须排除故障,更换润滑油后,方可继续运转。
      减速器应定期检修。如发现擦伤、胶合及显著磨损,必须采用有效措施制止或予以排除。备件必须按标准,更新的备件必须经过跑合和负荷试验后才能正式使用。 用户应有合理的使用维护规章制度,对减速器的运转情况和检验中发现的问题应做认真的记录 。

      小 结
      转眼两周的时间过去了,感觉时间过得真快,忙忙碌碌终于把机械设计做出来了。我通过这次设计学到了很多东西。使我对机械设计的内容有了进一步的了解.
      因为刚结束课程就搞设计,还没有来得及复习,所以刚开始遇到好多的问题,都感觉很棘手.因为机械设计是把我们这学期所学知识全部综合起来了,还用到了许多先前开的课程,例如金属工艺学,材料力学,机械原理等.
      首先,我们要运用知识想好用什么结构,然后进行轴大小长短的设计,要校核,选轴承。最后还要校核低速轴,看能否用。键也是一件重要的零件,校核也不可避免。所有这些都用到了力学和机械设计得内容,可是我当时力学没有学好,机械设计又没完全掌握,做这次设计真是不容易啊!.
      但通过这次机械设计学到了许多,不仅是在知识方面,重要是在观念方面。以往我们不管做什么都有现成的东西,而我们只要算别人现有的东西就可以了,其实那就是抄。但现在很多是自己设计,没有约束了反而不知所措了。其次,我在这次设计中出现了许多问题,经过常得指点,我学到了许多课本上没有的东西他并且给我们讲了一些实际用到的经验.收获真是破多啊!最后就是我们的课程开了这么多,我们一定要把基础打牢,为以后的综合运用打下基础啊.这次机械设计课程就体现了,我们现在很缺乏把自己学的东西联系起来的能力.
      最后我总结一下通过这次机械设计我学到的。实践出真知,不假。通过设计我现在可以了解真正的设计是一个怎样的程序啊.而且其中出现了许多错误,为以后工作增加经验。虽然机设很累,但我很充实,我学到了许多知识,我增加了社会竞争力,我又多了解了机械,又进步了。总之,这次机械设计虽然很累,但是我学到了好多自己从前不知道和没有经历的经验。

      参 考 文 献

      1 <<机械设计>>第八版 濮良贵主编 高等教育出版社 ,2006
      2 <<机械设计课程设计>>第1版 . 王昆,何小柏主编 .机械出版社 ,2004
      3 <<机械原理>> 申永胜主编 清华出版社 ,1999
      4 <<材料力学 >> 刘鸿文主编 高等教育出版社 ,2004
      5 <<几何公差与测量>>第五版 甘永力主编 上海科学技术出版社 ,2003
      6 <<机械制图>>

    浏览 426赞 62时间 2023-02-26
  • 晓晓雯雯雯

    我觉得这个内容很多啊,但是你的具体要求好像又有差异,建议你网上找找

    浏览 222赞 69时间 2021-12-20

急求带式输送机传动装置中的二级圆柱齿轮减速器毕业设计