地球化学在城市环境地质评价中的应用

撒野撒野王子 2021-09-19 09:32 333 次浏览 赞 119

最新问答

  • 茶虫小豆豆

    1.地球化学环境与人类生存密切相关

    人们的生活环境与地球上地球化学场的分布有着密切的联系。地球表面元素分布的不均匀,一般通过食物、水、空气影响人体。当其含量变化(过高或过低)超出人体生理调节适应的范围时,人体健康即受影响,出现一些与地球化学场有关的疾病。

    在人体内的生物化学过程中,微量元素起着关键性的作用,目前已知的起关键性作用的元素有:Fe、Mn、F、Zn、Cu、Mo等14种人体必需的元素和Hg、Pb、Cd等有害元素。不同的微量元素在人体内有其各自的生物学作用及有害性。例如,氟是一种能增进骨骼和牙齿强度的元素,若缺乏氟,则龋齿发病率,若氟过量,又会引起斑釉齿;钼对生命的存在有关键性的作用,在土壤缺钼时,则食管癌流行,在高钼区,则痛风症多发。各微量元素间又能相互拮抗和协同人体的生物学作用。

    2.元素含量指标和病种指标的确定

    所谓元素含量指标是指人体为维持机体正常生理功能,对必需元素的需要范围和对有害元素的承受范围。在环境中,这些元素的含量不足或过量,都会有碍于健康,引起疾病。为此,需对这些元素确定其最低允许浓度和最高允许浓度,即元素含量指标。表6-1-1给出了某地区水系沉积物中一些元素的含量指标。它的确定是以某地区的地表土壤中元素丰度为健康基准含量,考虑到人体内的平衡作用以及水系沉积物与土壤的差异,将必需元素的基准含量的4倍和1/4倍分别作为过量和缺乏的含量限,对于有害元素,根据其毒性程度分别以基准含量的2倍、4倍、8倍作为对健康有影响的含量限。

    表6-1-1 水系沉积物中元素含量指标

    王成,1987。区域地球化学在人体健康问题上的应用,浙江地质科技情报,第3期。

    表6-1-2是用浙江土壤区域化探普查结果确定的地球化学病种指标。从表中可看出,不同的微量元素及其组合在人体内的生物作用不同,在环境中,其过量或缺乏都会引起地球化学病。这些引起地球化学病的元素及其组合称为地球化学病种指标

    王成,1987。区域地球化学在人体健康问题上的应用,浙江地质科技情报,第3期。。

    表6-1-2 地球化学病种指标

    (据王成,1987)

    注:*本病发生在40~60岁绝经期妇女。

    3.实例

    (1)渡口市及其周围环境质量评价

    渡口市是一座新兴的中型城市,市区及其外围基岩广为出露。基岩区域地球化学测量为环境质量综合评价了基础。

    根据区内不同类型岩石中元素分布的统计(图6-1-1),对渡口地区进行了初步的地球化学区划。依基岩中元素的共生组合和含量差别,该区可大致划分为五个环境地球化学区(图6-1-2)。

    图6-1-1 渡口地区不同类型岩石中主要微量元素的丰度

    (据刘英俊等,1987)

    图6-1-2 渡口地区地球化学分区略图

    (据刘英俊等,1987)

    第Ⅰ区位于测区东、南及西北部,是大片闪长岩类分布的地区。该区的地球化学特点是,元素组合比较简单,元素含量变化幅度不大,且多数低于地壳同类岩石的平均丰度。含量较高的元素主要是Cd、G a、Ba,其次是Co、Cr、Pb,其他元素含量均较低。

    第Ⅱ区位于测区东南部,区内有面积不大的前震旦纪变质岩呈带状分布。地球化学特点是,元素种类少,含量低,除Cd、Ba、Co外,其他元素含量均接近或低于地壳同类岩石的平均丰度。

    第Ⅲ区位于测区西北部,出露地层为以石灰岩为主的早古生代地层。经光谱半定量分析,微量元素均未能检出。通过定量分析,发现Co、Cd、Pb、As的含量稍高,其他微量元素含量大大地低于地壳同类岩石的平均丰度。

    第Ⅳ区位于测区中部,有各类火成岩出露,富集了各种铁族元素和稀有、放射性元素。根据不同岩石类型中元素组合的不同,可将本区分为四个亚区,依次是玄武岩亚区(1)、正长岩亚区(2)、辉长岩亚区(3)和花岗岩亚区(4)。

    第Ⅴ区位于测区西南和东部,出露地层为中生代煤系地层。许多元素含量虽未形成异常,但多数含量偏高。

    通过对渡口地区不同岩石类型及其所含化学元素的分析对比可知,在测区东南部,岩性及其化学元素组合相对比较简单,沉积岩和前震且纪变质岩分布面积较大,地形高差比测区西北部小,岩石遭受的侵蚀作用也相对较小,三叠纪含煤层虽已开采,但现有表明,对环境影响不大,其他矿产尚未大规模开采,人为地造成各种化学元素迁移的因素少,环境质量相对较好。

    在测区西北部、中部和东北部,岩石类型及其化学元素组合比较复杂,各种火成岩广泛出露,影响人体的元素较多,较大的地形高差使岩石受到较甚的剥蚀作用,攀枝花共生矿正在进行大规模开采,选矿、冶炼过程正在大量排放“三废”,自然的和人为的因素使各种化学元素发生迁移,不断地转入生态环境,使环境质量降低。目前急需制订一合理方案,进行综合治理[1]

    (2)北京地区高氟区与地质环境的关系

    地矿部物化探科技情报网,1987。物化探技术在城市工程中应用经验交流会论文集。

    北京地区的高氟区分布在13个区县80个乡的360多个村,氟斑牙和氟骨症达20万人。患氟斑牙,不仅影响牙齿的美观,而且影响咀嚼功能,不利于对食物的消化、吸收。患氟骨症,轻则腰腿、关节痛,重则四肢变形,不能像正常人一样自由伸曲,严重者使劳动力丧失,甚至生活上不能自理。

    图6-1-3 北京山区水系沉积物中全氟含量异常示意图

    (据地矿部物化探科技情报网,1987)

    氟中毒与含氟矿物、岩石的关系在北京地区,发现的含氟矿物主要有萤石、磷灰岩、黑云母、金云母和角闪石等。萤石中氟含量为48.7%,磷灰石中氟含量为3.4%,云母、角闪石中氟含量为n×102×10-6~n×104×10-6。北京山区水系沉积物全氟异常图表明,全氟异常(异常下限为800×10-6)与中性岩、基性岩、片麻岩、性岩和萤石矿有着密切的关系,异常是由这些岩矿石中含氟矿物相对富集所引起的(图6-1-3)。经试验,昌平上庄一带富含磷灰石的闪长岩、辉长岩附近,全氟异常高达27400×10-6。过80目筛的辉长岩、闪长岩样品,用蒸馏水浸泡三天,其水溶液中氟含量为0.3mg/L,比正常饮用水中氟含量(0.5mg/L)还低。因此可认为,由中、基性岩和片麻岩中的磷灰石引起的全氟异常与氟中毒无关。性岩与氟中毒有密切关系。性岩中全氟含量较高,可高达n×103×10-6,这是因为性岩中,磷灰石常与金云母等含氟矿物伴生并含有萤石矿物,往往有萤石脉分布,性岩经风化后,所含的氟很容易被水溶出而进入地下水。在地下水与地表水滞流的特定的水文地质环境中,水与含氟矿物接触时间长、接触面积大,地下水中的氟含量超标,这种环境中的裂隙水、孔隙水的含氟量可达1.1mg/L以上,最高达8.0mg/L。萤石矿与氟中毒关系更为密切。萤石全氟含量高达48.7%,萤石风化物的全氟含量也较高,可达5.7%。在萤石矿附近,由于萤石及其风化物碎屑沿水系运移,在一定范围内引起全氟异常,萤石及其风化物中的氟可被水溶出,造成饮用水中氟含量的增多。

    高氟区与平原低洼区碱性环境的关系 硅盐矿物是土壤的主要组分。硅盐矿物在物理化学风化作用下,形成碎屑及次生硅盐矿物——粘土矿物,在各种自然力的作用下,不断地向沉降地带运移,形成平原区的巨厚松散堆积物。F和O及OH的同晶取代作用使硅盐矿物中普遍含氟,另外,土壤胶体和粘土矿物对氟有吸附作用,使土壤中的氟含量,以致各地土壤的全氟含量相近,约200×10-6。当处在碱性环境时,土壤里难溶的氟化物在羟基的作用下,使其中的氟以离子状态活跃在土壤中,土壤胶体和粘土矿物所吸附的氟,在碱性环境中容易被释放,使土壤中氟的活动性增加。此时,土壤里的氟离子随地下水流动而迁移到低洼地带,经强烈的蒸发,不断地在地表富集,形成高氟环境。因此,在碱性环境区,浅层地下水氟含量往往较深层地下水的高,长期饮用浅层高氟水,就会引起严重的氟中毒。另外,在碱性环境的土壤里,活性氟易被植物吸收,例如,大兴小皮营和前甫的黄豆、玉米、小麦等农作物的氟含量超过标准2~3倍。若长期食用高氟食物,会使人体内骨氟含量增加,造成严重的氟骨症。

    图6-1-4 北京地区饮水中氟含量异常示意图

    (据地矿部物化探科技情报网,1987)

    高氟区与地下热矿化水分布的关系 氟与地下热矿化水关系密切。当地下热矿化水在深部循环时,溶滤俘获了一定数量的源于岩浆中的,使其富含氟、氡、镭、偏硼、硫化物及可溶性二氧化硅等。北京地区地下热矿化水的氟含量在4.5~16.0mg/L之间。温泉和热水井中流出的热矿化水的扩散,各种用途的深水井不断增多,部分水井未严格封孔,使不同层的地下水连通混染,可造成饮水中的氟含量超标。北京的已知地热区,如延庆胡家营(1号异常)、海淀温泉一带(8号异常)、昌平小汤山一带(9号异常)、昌平太平庄一带(13号异常)、朝阳区北太平庄一带(14号异常)、房山良乡一带(16号异常)和廷庆康庄一带(2号异常)饮水中氟含量均超标准(图6-1-4)。

    总之,通过对北京地区高氟区与地质环境关系的研究,初步认为北京地区氟中毒区有以下四种类型:①萤石矿中氟溶出引起的氟中毒区;②性岩含氟矿物溶出引起的氟中毒区;③平原低洼地区碱性环境下活性氟积聚引起的氟中毒区;④地下热矿化水浸染漫延引起的氟中毒区。

    浏览 172赞 88时间 2022-02-21

地球化学在城市环境地质评价中的应用