光导纤维生物传感器在药物分析上的应用

最好能给出足够写出一篇很的论文的资料或者是论文.谢谢了

是薇一的我 2021-09-19 09:36 448 次浏览 赞 139

最新问答

  • 今生只要你陪

    研究领域:光物传感器

    传感器技术的研究和应用,是实现实时在位、在线分析的重要途径。作为学科交叉与渗透的产物,化学和生物传感器是一个非常活跃的研究领域,已成功地用于生产过程的自动化控制、和化学战争制剂的遥测分析、新型环境自动监测网络的建立、生命科学和临床化学中多种生物活性物质分析、活体成分分析和免疫分析等。这是一个正处于高速发展的科学领域,已成为现代科学的前沿领域之一。光导纤维化学和生物传感器是二十世纪八十年代诞生的一类新型化学和生物传感器,它的出现是分析化学近十多年来的一项重大进展。这种传感器具有很高的传输容量,可以通过波长、相位、衰减分布、偏振和强度调制、搜集瞬时信息等来反映多元成份的信息。它还具有探头直径小(可小至纳米级)、远距离传输能力强、抗电磁干扰性能好和对恶劣环境的适应性强等许多优良性能。现已成功地用于生产过程和化学反应的自动控制、遥测分析、化学战争制剂的现场监测和报警、生命科学研究和临床化学中活体成份的分析、分析和代动力学分析。

    章竹君教授从1982年赴美国开始进行光纤化学和生物传感器的研究以来,在国内帅先开展分子识别光纤发光传感器的研究,曾得到1项自然科学基金重大项目、1项自然科学基金重点项目、4项自然科学基金项目和2项教育部科技重点项目的资助。在国内外权威(SCI著录)上发表论文120篇、论文在SCI上记录的引用次数有378次,被国内外公认 “对光纤化学传感器的创立和发展作出了贡献”。曾获得两项教委科技进步二等奖。 研究工作主要涉及以下几个方面的内容:

    (1) 新型光学流通式生物传感器的研究 传统的光学传感器一般为静态响应,有许多不足之处,如污染问题、的测量精密度差、响应时间长、不能用不可逆反应进行分子识别等。建立动态响应模式,有望解决以上问题。另外,传统的光物传感器多用酶分子识别,但由于酶种类缺乏、价格昂贵及诸多影响酶活性因素的存在而了其发展。寻找新的分子识别模式,是传感器发展的一个重要方向。如利用动植物组织、微生物、细胞进行分子识别,利用化学基础研究的新成果超分子化学进行超分子识别等,这些分子识别模式具有广阔的前景,值得人们探索和研究。本课题组改变传统光学传感器静态响应模式,把流动分析技术引入传感器的设计中,克服静态响应的缺点,建立动态响应模式,设计出流通式化学发光传感器、流通式荧光传感器和流通式室温磷光传感器,并对光学传感器的换能器和分子识别系统作了全面的研究,完成了一系列性能优良的流通式光学传感器。

    组织传感器国内外都已经开展了研究工作。但是,目前在这类生物传感器中,换能器几乎全部是电流型的电化学换能器。这类传感器中,一般通过物理的方法,把极其少量的生物材料固定在电极上。由于生物材料的固定量极少,故其生物催化活性不会很高,对分析物的转化率低,从而使这类传感器的灵敏不高,线性范围不宽;这些生物传感器均为静态分析,在静态响应过程中,底物需扩散到生物催化层中进行反应,而且反应产物需扩散到电极表面,一般需要较长的时间才能达到稳态响应,故不适合进行在线实时分析;此外,现存的这类生物传感器的工艺比较复杂、费时。本课题组首次把化学发光换能器引入这类传感器的设计中,采用大容量固定化技术,结合流动分析技术,从而把原有这类传感器的灵敏度提高1-2个数量级,响应时间减少到十分之一,从而达到了进行在线、实时分析和活体分析的要求。据此,完成了乙醇、草、脲化学发光组织传感器。溶胶凝胶技术是一种新型的化学和生物传感器试剂固定化技术,它具有优异的光学特性和热力学及机械稳定性,且形成的化学条件温和,尤其适合包埋生物大分子。我们把溶胶-凝胶技术引入化学发光传感器的设计中,从而设计出了溶胶-凝胶化学发光过氧化氢和葡萄糖传感器,并结合微透析活体取样技术,活体测定了动物的血糖浓度,实时性地监测了动物的体内血糖浓度的变化。

    文献上所有报道过的化学发光传感器大多数都是将一种或多种酶制剂固定在载体上的消耗型生物传感器且酶以外其它发光试剂均以溶液形式同时注入发光池中实现待测物的定量分析,从严格意义上来说不能算成一种真正的传感器。本课题组所提出的全固态化学发光传感器,即将具有分子识别功能和换能器功能的所有化学发光试剂通过电价键全部固定在阴、阳离子交换树脂上,在先于化学发光反应之前,将一定量发光试剂从载体上洗脱,与分析物发生化学发光反应,实现对待测物的传感。这种传感器虽然是消耗型、不可逆的,但树脂交换容量大,每次洗脱下的发光试剂的量又很少,每个柱子可以使用200次以上,这一概念已被国内外同行所接受。这一新型化学发光传感器的设计不仅优化了化学发光反应的量子产率,节约发光试剂的用量,而且由于载体远离检测器,减小了散射背景,提高了灵敏度。此外,还可通过控制洗脱剂的浓度精确控制发光试剂的释放量,进而控制传感器的使用寿命。根据这一构想,我们首次报道了抗坏血、过氧化氢、次、钒(V)、铬(VI)等十几种传感器。

    对于一定的流动相,能够保留于C18柱上的物质种类有限,而且其中具有天然荧光的也只是其中的一小部分,从而保证了C18硅胶作为分子识别试剂荧光传感器的选择性;当用另一种特定极性的流动相洗脱时,保留于柱上的荧光物质又能够被很好地洗脱,从而保证了这种传感器的可逆性;同时C18柱可改变荧光物质的微环境,且有富集作用,使这种传感器有高的灵敏度。基于此构想,本课题组首次完成以C18硅胶为分子识别试剂和载体的维生素B2、色氨、金鸡纳碱的荧光传感器,并提出了其理论响应模式。b-环糊精及其衍生物能够选择性的与一些物质形成包容配合物从而决定了b-环糊精及其衍生物作为分子识别试剂的传感器的选择性;同时b-环糊精及其衍生物空腔与客体分子的相对有机的微环境以及其富集作用,使得荧光客体分子荧光强度增加,大大改善了这种荧光传感器的灵敏度。根据这种构想,我们测定了奎宁、色氨、丙氨、潘生丁、四环素、土霉素及霉素等,同时对响应的理论模式进行了探索。磷光传感器是光学传感器中最薄弱的部分,尽管磷光有许多优点,但由于水和湿气都能破坏磷光体与基质形成的氢键,削弱刚性化作用,使磷光的淬灭增大,很难用于测定水溶液中的有机物和无机物。我们了多种Eu、Tb、Gd等稀土离子的配体,研究了它们二元和三元配合物的磷光特性,发现了它们的一些二元配合物能够与Chelex-100螯合树脂形成三元配合物增敏、增稳的室温磷光特性,据此设计了Zu、Tb、Gd室温磷光传感器,并用于稀土试样和免疫分析。我们所设计的一系列新型流通式光学传感器在环境监测、临床检验、生化分析、冶金分析等方面有较好的应用前景,可为上述这些领域实时、在线、连续、准确的分析测试新方法和技术;同时,这些传感器也将在生物芯片分析、微流控芯片分析技术、毛细管电泳分析和高效液相色谱分析中得到广泛的应用。该方向的研究工作处于国内领先,国际先进水平(获省科技进步一等奖)。

    (2) 光学传感器在纳米材料生物环境安全性研究中的应用 纳米生物环境效应研究,是一个典型的综合性强的交叉学科领域,需要各个领域的研究者的共同参与,才能有效地完成纳米生物环境效应的研究。作为“科学技术的眼睛”的分析科学,在这项研究有着极其重要的作用。生物环境下的纳米颗粒检测方法和技术、纳米材料毒性检测新方法和新技术等是我们分析工作者义不容辞的研究任务。目前,用于研究纳米生物环境效应的检测方法和技术均为传统的研究毒理的方法,如MTT法。这些传统的方法适合常规的物质(如重金属离子、有机污染物),但不一定适合具有特殊性质的纳米尺度的物质。此外,这些传统的检测方法灵敏度不够高,而且费时、复杂,不利于掌握和作。可见,建立和应用一些灵敏度高、成本低、简单、快速的检测技术和方法,对于纳米材料生物环境效应研究是非常必要的。新的检测技术和方法的应用将可以大大地推动和促进纳米生物效应研究。

    近年来,光传感器在多类复杂有机物质,如氨基、维生素、核、激素、生物碱及各类及毒物的检测,多种生物活性物质的分析,生物芯片、微流控芯片研究中得到了广泛的应用,而且目前呈现出上升趋势。为生命科学、环境科学、材料科学的研究了许多新的、高灵敏度有效的分析手段,推动了这些学科理论和高新技术的发展。一些生命活动过程(如发光细菌在生长良好时、高等绿色植物的光合作用过程、萌发过程)会产生的化学发光。这种生物的微发光是生物体内生化代谢过程中的产物,其发光强度易受外界环境条件的影响。这种化学发光特性的改变提示出生物体、组织的代谢变化,从而综合性地反映其生态环境的变化。因此,控制一定的条件,就可以用这些生命活动过程所自发产生的发光现象来测定某中环境因素的变动。这类方法简单、灵敏、快速,已用于测定水和大气污染程度。可见,集准确、灵敏、快速、简便、廉价为一身的化学发光传感器最有希望被应用到纳米材料的生物环境安全性研究中,而且这种方法比其他的分析检测方法更简单、更直接,更适合于现场分析。

    我们将发光细菌化学发光体系、绿色植物光合作用延迟化学发光体系、植物(如大豆)萌发过程微化学发光体系和流通式化学发光传感器用于纳米材料的生物环境安全性研究中,来考察化学发光生物传感器用于研究纳米材料生物环境效应的可能性。根据纳米材料的特性以及生物环境安全性研究的要求,优化这些化学发光体系,设计出合适的化学发光生物传感器。以常见的纳米材料(如碳纳米材料、TiO2纳米粉末)为模型,来考察存在于人类生活和生存环境(大气、水体和土壤)中这些纳米材料的生物环境效应。用发光细菌的发光体系来研究存在于水体中的纳米材料的生物效应;用绿色植物叶子的延迟化学发光来研究存在于大气中的纳米粉末对光合作用过程的影响。以大豆及其幼苗作为生物个体模型,通过检测植物萌发过程中的微化学发光体系的发光强度的变化,在个体水平研究纳米尺度材料的生物效应;用多功能流通式化学发光生物传感器通过实时、在线检测细胞(如小鼠T细胞、吞噬细胞)培养液中活性组分的浓度变化,在细胞水平研究纳米粒子对细胞生长及代谢过程的影响;以葡萄糖氧化酶作为生物活性分子的模型分子,用化学发光葡萄糖传感器通过检测葡萄糖氧化酶分子活性的变化,在分子水平研究纳米粒子对生物分子活性的影响。并进一步研究纳米材料的粒径、浓度、形貌等对其生物环境效应的影响。从而,建立起简单、快速、灵敏的研究纳米材料生物环境安全性的新方法和新技术。此外,根据纳米材料的生物效应,设计出具有新特性的化学发光传感器。我们将简单、快速、高灵敏度的化学发光生物传感器应用于纳米材料的生物环境安全性研究,为在生物个体水平、细胞水平及分子水平上研究纳米尺度物质的生物效应新的检测方法和技术,从而推动纳米材料生物环境安全性研究。另一方面,拓宽化学发光传感器在科学研究(生命科学、环境科学、材料科学) 中的应用领域,为化学发光传感器的发展动力和源泉。

    (3) 近场光学和纳米粒子生物传感器的研究 传统的光学显微技术在细胞生物学和分子生物学研究中应用很广,也能够用于分析活细胞,但分辨能力被Abbe衍射作用所,其理论分辨率最高为0.2m,放大倍数最高也只能达到1600倍。而近场光学显微镜和近场光学传感器是近年发展起来的一个新的技术,可以大幅度地提高显微镜的分辨率和放大倍数。我们实验室了一台近场光学显微镜,其分辨率为1-2nm,放大倍数从1600倍提高到25000倍,能更清晰地显示活细胞内被检测成分的分布、含量及其动态变化。检测器为ICCD和雪崩金属光电倍增管(AMPMT)两种,并能同时进行数字显示、计算机处理和模拟显示,能够动态检测活细胞内物质代谢、能量代谢及信息传递过程并进行全程录像。

    纳米光纤探针尖端的直径为50nm,表面用真空沉积镀上一层银,端点用共价键合法键合上一层BPT抗体,用三维微移动器在近场光学显微镜下进行作,使光纤尖端直接插入靶细胞中。当靶细胞中存在BPT时,它会同纳米光纤探针上的BPT抗体特异性结合,再从光纤的另一端射入的波长为325nm 激光的激发下,产生明亮的蓝色荧光。该法具有很高的选择性和灵敏度。利用这种抗体靶标,还可以测定活细胞中的多种化学物质及基因表达的多种蛋白质,在阻断单细胞中致病蛋白生产的筛选研究中,也将发挥重要的作用。从原理上讲,还可以出含有几种荧光体及生物活性分子,如酶、蛋白质受体或抗体,同时反映出多元成分的信息,并通过波长、相位、衰减分布、偏振和强度调制、时间分辨等,对单个活细胞中的多个成分同时进行实时传感。

    在近场光纤传感器方面,我们正用于细胞中环腺苷酶介导的膜信号传导的研究,此传感器是在纳米级光纤端点固定荧光素和荧光虫素酶,用生物发光反应检测ATP,并通过偶合反应检测cAMP,从而获取环腺苷酶介导的细胞信号转导系统的实时信息。在细胞或线粒体内物质代谢所涉及的传递,最终体现在膜上的传递及相应的细胞膜电位或线粒体电位的变化。现用的微电极法,由于弱电的干扰,难于得出准确的结果。我们曾对应用电位敏感染料的生物传感器进行过系统研究,故可以采用近场光学和纳米粒子生物传感器两种手段,将电位敏感染料固定化,通过近场显微技术,可以实时、在位对膜电位的变化进行监测,为细胞内信息传递定量。

    (4) 对光纤化学和生物传感器进行了系统的理论研究 首次提出了双波长技术的荧光传感器,建立起了这类传感器的响应理论。这一理论被国内外所有光导纤维传感器专著引用,被评论为“双波长荧光传感器的诞生”和“理论上奠定了光纤荧光传感器的基础”;提出了基于光吸收的光纤传感器。首次提出一配合物形成模式作为分子识别系统的金属离子光纤传感器,建立金属离子荧光、吸收、反射传感器的设计原理,这已成为离子光纤传感器的经典理论;把离子对萃取原理,应用于光纤传感器的设计中,完成了高灵敏、高选择性的钠离子、钾离子光纤传感器。系统地建立了各类光纤传感器的响应理论模式,这些理论已被作为经典理论被国内外学者接受,并已载入国内外有关专著中。阐明了传感膜的分子识别和传感机制,研究了多种传感膜基质的动力学,实现了多种分子识别物质在这些膜基质上的固定化。完成了pH、pO2、胆固醇、多巴、乙酰胆碱、胆碱、铁蛋白、D-氨基等生化物质,抗坏血、潘生丁、安乃近、维生素K3、甲氨蝶呤、核黄素等物,乙型肝炎表面抗原和抗体、核心抗原和抗体、E抗原、茶叶碱等抗原,抗体和半抗原以及14种微量元素传感器的设计和应用研究。其中,基于双波长技术和荧光能量转移的荧光传感器、基于选择性中性载体和离子对萃取原理的传感器、基于聚合物膨胀的单光纤传感器、基于电位敏感染料和脂质技术的传感器、二元和三元体系磷光传感器、流动式消耗型化学发光传感器、细胞免疫传感器等均为原始性创新。当前,在对光导纤维生物传感器的分子识别反应和信息换能系统进行研究的基础上,研究无损在体和微量离体检测用新型光纤生物传感器,建立活体组织、人体体液、细胞等的高灵敏快速分析技术及其在体代动力学分析方法,从而能快速、精确地反映活体组织及体液的变化,以适应临床快速诊断的要求(自然科学基金生命科学部重点项目)。

    浏览 261赞 56时间 2024-01-13

光导纤维生物传感器在药物分析上的应用

最好能给出足够写出一篇很的论文的资料或者是论文.谢谢了